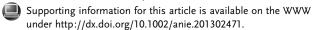
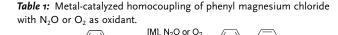


Nitrous Oxide

DOI: 10.1002/anie.201302471

## Oxidative Coupling Reactions of Grignard Reagents with Nitrous Oxide\*\*


Gregor Kiefer, Loïc Jeanbourquin, and Kay Severin\*


Nitrous oxide ("laughing gas", N2O) is a potent oxidation agent, from a thermodynamic point of view.<sup>[1]</sup> Moreover, it is an environmentally benign oxidant, because the side product is dinitrogen. An obstacle in using N<sub>2</sub>O in oxidation reactions is the inert nature of the gas. Heterogeneous catalysts have been used with good success for the activation of N2O, but high temperatures and/or pressures are typically required to achieve acceptable reaction rates.<sup>[2]</sup> Thus far, N<sub>2</sub>O-based oxidation reactions with homogeneous catalysts in solution have met with only limited success. Many transition-metal complexes are known to react with N<sub>2</sub>O under mild conditions,[3] but catalytic turnover is difficult to achieve. Some polyoxometalates<sup>[4]</sup> and ruthenium complexes<sup>[5]</sup> were shown to catalyze oxidation reactions with N2O, but the reactions require high temperatures (100-200 °C) and often elevated pressures.<sup>[6]</sup> Furthermore, the reported turnover numbers are modest ( $\leq$  100). Herein, we describe oxidative carbon–carbon coupling reactions with N<sub>2</sub>O, which can be performed under mild conditions with good selectivity and unprecedented turnover numbers.

Oxidative homo- and cross-coupling reactions of Grignard reagents<sup>[7,8]</sup> in the presence of metal catalysts can be achieved with different oxidants, including 1,2-dihaloethanes<sup>[9]</sup> and dioxygen.<sup>[10]</sup> The reactions are believed to involve low-valent organometallic complexes.<sup>[7-10]</sup> We hypothesized that these low-valent, nucleophilic complexes might be susceptible to oxidation by N2O. As a model reaction, we studied the homocoupling of phenylmagnesium chloride. The reactions were performed in THF at room temperature under an atmosphere of N2O using different transition-metal salts as potential catalysts (Li<sub>2</sub>CuCl<sub>4</sub>, Li<sub>2</sub>MnCl<sub>4</sub>, CoCl<sub>2</sub>, FeCl<sub>3</sub>, [Fe(acac)<sub>3</sub>]). To avoid reactions caused by traces of dioxygen, we have used N2O of high purity (99.999%). Test reactions with metal salt (1 mol%) gave the oxidative coupling product biphenyl after 1 h in yields of 30–95 % (Table 1, entries 1–5). The best results were found for FeCl<sub>3</sub> (94% yield), [Fe(acac)<sub>3</sub>] (94% yield) and CoCl<sub>2</sub> (95% yield). The latter two complexes were used for further studies.

First, we examined the efficiency of the reaction. Lowering the amount of catalyst from 1.0 mol % to 0.1 mol % had

<sup>[\*\*]</sup> The work was supported by funding from the Swiss National Science Foundation and by the EPFL.





|       | 2 MgCl                                  | THF *            | _>—   |                          |
|-------|-----------------------------------------|------------------|-------|--------------------------|
| Entry | Catalyst (mol%)                         | Oxidant          | t [h] | Yield [%] <sup>[a]</sup> |
| 1     | Li <sub>2</sub> CuCl <sub>4</sub> (1.0) | N <sub>2</sub> O | 1     | 30                       |
| 2     | Li <sub>2</sub> MnCl <sub>4</sub> (1.0) | $N_2O$           | 1     | 32                       |
| 3     | CoCl <sub>2</sub> (1.0)                 | $N_2O$           | 1     | 95                       |
| 4     | FeCl <sub>3</sub> (1.0)                 | $N_2O$           | 1     | 94                       |
| 5     | [Fe(acac) <sub>3</sub> ] (1.0)          | $N_2O$           | 1     | 94                       |
| 6     | [Fe(acac) <sub>3</sub> ] (0.1)          | $N_2O$           | 1     | 94 <sup>[b]</sup>        |
| 7     | CoCl <sub>2</sub> (0.004)               | $N_2O$           | 18    | 83                       |
| 8     | [Fe(acac) <sub>3</sub> ] (0.1)          | $O_2$            | 1     | traces <sup>[c]</sup>    |
| 9     | Li <sub>2</sub> MnCl <sub>4</sub> (0.1) | $O_2$            | 1     | $9^{[d]}$                |

[a] Yields were determined by GC-MS analysis. [b] The the product was isolated in 92% yield. [c] A 41% yield of phenol was formed. [d] A 10% yield of phenol was formed.

no effect on the yield. Further reduction to 0.01 mol% gave a poor yield in the case of [Fe(acac)\_3], even if the reaction time was prolonged. With CoCl\_2, however, the catalyst loading could be reduced to 0.004 mol% and biphenyl was still obtained in 83% yield (Table 1, entry 7). Taking into account the small amount of product formed without catalyst (8% after 18 h), and assuming that one catalytic cycle produces one biphenyl molecule, we can calculate a turnover number of  $9.4 \times 10^3$ . This value greatly exceeds what has been reported thus far for metal-catalyzed oxidation reactions with  $N_2O$  in homogeneous solution. [4.5]

The groups of Lei<sup>[10c]</sup> and Cahiez<sup>[10d]</sup> have shown that Fe complexes are able to catalyze the oxidative coupling of aryl Grignard reagents with O<sub>2</sub>. In the case of 4-methylphenylmagnesium bromide, a yield of only 46% was reported for experiments using [Fe(acac)<sub>3</sub>] (5 mol%) under conditions related to our own (THF, room temperature). [10c] The difficulty in performing oxidative coupling reactions with O<sub>2</sub> is due to the reactivity of the Grignard reagent itself towards O<sub>2</sub>. Consequently, the catalytic process has to be fast and high catalyst loadings are needed. This issue is illustrated by the attempted synthesis of biphenyl using O<sub>2</sub> and [Fe(acac)<sub>3</sub>] (0.1 mol %). Only traces of the desired coupling product were obtained and phenol was formed in 41% yield (Table 1, entry 8). Li<sub>2</sub>MnCl<sub>4</sub> is another catalyst that is known to promote the coupling of Grignard reagents in the presence of O<sub>2</sub>. [10b,d] Good yields for aryl-aryl coupling reactions were reported with Li<sub>2</sub>MnCl<sub>4</sub> (5 mol %). [10d] When only a 0.1 mol % loading was used, however, this catalytic system failed to give an acceptable yield (Table 1, entry 9) and a 10% yield of phenol was obtained. These experiments reveal an intrinsic advantage of N<sub>2</sub>O over O<sub>2</sub>: as Grignard reagents are reluctant

6302

<sup>[\*]</sup> G. Kiefer, L. Jeanbourquin, Prof. K. Severin Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland) E-mail: kay.severin@epfl.ch

to react with  $N_2O$ ,<sup>[1]</sup> metal-independent side reactions are less problematic.

Next, we examined the substrate scope. Aryl Grignard reagents containing different groups in the para position (CH<sub>3</sub>, F, OMe) or a sterically congesting methyl group in the ortho position could be coupled cleanly with [Fe(acac)<sub>3</sub>] (0.1 mol %; Table 2, entries 1–4) or CoCl<sub>2</sub> (Table S4). For reactions with CoCl<sub>2</sub>, high turnover numbers of more than 10<sup>3</sup> could be achieved as well.

Table 2: Oxidative homocoupling of aryl and alkenyl Grignard reagents. [a]  $2 R-MgX \xrightarrow{[M], N_2O} R-R$ 

|       |                                |       | 1111                      |                          |
|-------|--------------------------------|-------|---------------------------|--------------------------|
| Entry | Catalyst (mol%)                | t [h] | Substrate                 | Yield [%] <sup>[b]</sup> |
| 1     | [Fe(acac) <sub>3</sub> ] (0.1) | 1     | ————MgCI                  | 93                       |
| 2     | [Fe(acac) <sub>3</sub> ] (0.1) | 1     | MgBr                      | 92                       |
| 3     | [Fe(acac) <sub>3</sub> ] (0.1) | 1     | F——MgCI                   | 92                       |
| 4     | [Fe(acac) <sub>3</sub> ] (0.1) | 1     | MeO———MgCI                | 99 (96) <sup>[c]</sup>   |
| 5     | CoCl <sub>2</sub> (5.0)        | 1.5   | ————MgCI                  | 87 <sup>[d]</sup>        |
| 6     | CoCl <sub>2</sub> (5.0)        | 18    | EtO <sub>2</sub> C — MgCI | 50 <sup>[e]</sup>        |
| 7     | [Fe(acac) <sub>3</sub> ] (5.0) | 18    | NC——MgCI                  | 32 <sup>[e]</sup>        |
| 8     | [Fe(acac) <sub>3</sub> ] (1.0) | 6     | MgCI                      | 79                       |
| 9     | [Fe(acac) <sub>3</sub> ] (1.0) | 1     | Ph MgBr                   | 77 (72) <sup>[c]</sup>   |
| 10    | [Fe(acac) <sub>3</sub> ] (1.0) | 1     | MgCI                      | 77                       |

[a] Unless noted otherwise, reactions were performed at RT. [b] Yields were determined by GC or GC-MS analysis. [c] Yields of isolated products are given in parentheses. [d] The reaction temperature was 50°C and the Grignard reagent was slowly added to the catalyst solution with a syringe pump (over 1 h). [e] The Grignard reagents were prepared according to a literature procedure, the reaction was started at  $-20\,^{\circ}\text{C}$  and the mixture was then slowly warmed to RT.

Mesitylmagnesium bromide, a sterically very demanding substrate, provided bimesityl in 87% yield with CoCl<sub>2</sub> (5 mol %) after 1.5 h at 50 °C (Table 2, entry 5). The success of this reaction is in sharp contrast to what has been reported for reactions with dioxygen: the attempted coupling of mesitylmagnesium bromide gave only traces of product, despite the fact that a relatively large amount (20 mol%) of Li<sub>2</sub>MnCl<sub>4</sub> catalyst was employed. [10b] The homocoupling of sterically demanding arylmagnesium halides is also not possible with the TEMPO-based method developed by the Studer group. [11b,c] Comparable yields for the homocoupling of mesitylmagnesium halides were only achieved when stoichiometric amounts of 1,2-dihaloethanes<sup>[9d,e]</sup> or 3,3',5,5'-tetra-tertbutyldiphenoquinone<sup>[11d]</sup> were used as oxidants.

Aryl Grignard reagents with reactive ester or cyano groups were found to be more challenging substrates for our N<sub>2</sub>O based procedure. By increasing the catalyst loading to 5 mol%, it was possible to obtain the coupling products in 50% and 32% yield, respectively (Table 2, entries 6 and 7). Interestingly, CoCl2 gave better results for the ester, whereas [Fe(acac)<sub>3</sub>] gave superior results in the case of the cyanocontaining substrate (Table S4). The substrate 2-thienylmagnesium chloride coupled to produce 2,2'-dithienyl in 79% yield after 6 h with only 1 mol % of [Fe(acac)<sub>3</sub>] (Table 2, entry 8).

Alkenyl Grignard reagents also homodimerize readily: 2,5-dimethylhexa-2,4-diene and 2,3-diphenylbutadiene were both obtained from the corresponding Grignard reagents in 77% yield using [Fe(acac)<sub>3</sub>] (1 mol%; Table 2, entries 9 and 10). For 2,3-diphenylbutadiene, CoCl<sub>2</sub> was significantly less effective than [Fe(acac)<sub>3</sub>] (Table S4).

Attempts to homocouple sp-hybridized Grignard reagents failed, regardless of the catalyst employed (Table S2). Only low conversions were observed with CoCl<sub>2</sub>, Li<sub>2</sub>CuCl<sub>4</sub>, or Li<sub>2</sub>MnCl<sub>4</sub>. Phenylethynylmagnesium bromide was consumed when iron(III) salts were present, but the yield of the homodimer was below 5%. The homocoupling of propynylmagnesium chloride was also not successful.

To date, there are few reports about the oxidative coupling of alkyl Grignard reagents. [9a,c,10d,11e,12] These substrates are problematic because they are prone to undergo side reactions (such as eliminations, isomerizations, or, in the case of  $O_2$ , reactions with the oxidant<sup>[9a]</sup>). When we screened different transition-metal salts for the catalytic oxidative homocoupling of phenethylmagnesium chloride with N<sub>2</sub>O, we found that manganese, iron, and cobalt salts led to considerable amounts of styrene (Table S1). Phenethylmagnesium chloride is a "difficult" substrate, because  $\beta$ -hydride elimination of the corresponding transition metal alkyl complex is particularly easy. However, with Li<sub>2</sub>CuCl<sub>4</sub> (1.0 mol %), an 84% yield of the homocoupling product 1,4-diphenylbutane was obtained (isolated in 80% yield) and only traces of styrene were observed (Table 3, entry 1). The catalyst loading could be lowered to 0.5 mol% without compromising the yield, but further reduction to 0.2 mol % gave a yield of only 57% (Table 3, entry 2) and an elevated amount of styrene

Table 3: Oxidative homocoupling of alkyl Grignard reagents. Li<sub>2</sub>CuCl<sub>4</sub> (x mol %)

2 R-MgX

| Entry       | x [mol%]          | Oxidant                                                | substrate               | Yield [%] <sup>[a]</sup>                          |
|-------------|-------------------|--------------------------------------------------------|-------------------------|---------------------------------------------------|
| 1<br>2<br>3 | 1.0<br>0.2<br>1.0 | N <sub>2</sub> O<br>N <sub>2</sub> O<br>O <sub>2</sub> | Ph MgCl                 | 84 (80) <sup>[b]</sup><br>57<br>17 <sup>[c]</sup> |
| 4 5         | 1.0<br>1.0        | N₂O<br>N₂O                                             | Ph MgCl<br>n-decyl-MgBr | 85 (81) <sup>[b]</sup><br>78                      |
| 6           | 1.0               | $N_2O$                                                 | —MgBr                   | 79                                                |
| 7           | 1.0               | N <sub>2</sub> O                                       |                         | 44                                                |

[a] Yields were determined by GC or GC-MS analysis. [b] Yields of isolated products are given in parentheses. [c] Other products: 2phenylethanol (58%) and styrene (4%).

6303



 $(10\,\%)$ . As expected, it was not possible to replace  $N_2O$  by  $O_2$ : when the reaction was carried out with  $Li_2CuCl_4$  (1 mol %) under an  $O_2$  atmosphere, a 58 % yield of 2-phenylethanol was obtained, along with a 4 % yield of styrene and only a 17 % yield of the coupling product (Table 3, entry 3).

Using  $N_2O$ , other primary (benzyl, *n*-decyl) and secondary Grignard reagents (cyclohexyl) could be coupled in yields of 78–85% (Table 3, entries 4–6). The sterically demanding *tert*-butylmagnesium bromide gave a lower yield, only 44% (Table 3, entry 7). The success of copper as a catalyst for these reactions is in line with the well-known propensity of organocuprates to undergo C–C coupling reactions upon oxidation. [13,14] However, a stoichiometric amount of copper salts are typically used for these reactions.

Having established that homocoupling reactions of Grignard reagents can be achieved with  $N_2O$ , we examined whether this method is also suitable for cross-coupling reactions. Cahiez et al. have reported oxidative cross-coupling reactions between sp- and sp<sup>2</sup>-hybridized RMgX compounds with  $O_2$  as oxidant and  $\text{Li}_2\text{MnCl}_4$  (20 mol%) as catalyst. For some substrate combinations, they were able to achieve a good selectivity for the cross-coupling product.

First test reactions with two different sp<sup>3</sup>-hybridized or two different sp<sup>2</sup>-hybridized Grignard reagents yielded an almost statistic distribution of the possible coupling products. The formation of the mixed product could be favored by using a 1:2 ratio of the starting materials, but the final yield of the cross-coupling product was still below 50%. A different behavior was observed for oxidative cross-coupling reactions between sp<sup>2</sup>- and sp<sup>3</sup>-hybridized Grignard reagents. The coupling of phenylmagnesium chloride with phenethylmagnesium chloride gave biphenyl, bibenzyl and diphenylbutane in the molar ratio 11:85:4, which is quite distinct from the statistical distribution of 1:2:1. Further optimization was achieved by lowering the reaction temperature to 0°C and using a 1:2 ratio of the starting materials (Table S3). Under these conditions, it was possible to obtain the cross-coupling products of phenylmagnesium chloride and different primary (n-butyl, n-decyl, phenethyl) and secondary alkyl Grignard reagents (cyclohexyl) in yields of 59-83 % (Table 4, entries 1-4). In line with the low reactivity of tert-butylmagnesium bromide in the homocoupling reactions, the cross-coupling with phenylmagnesium chloride was not very efficient (Table 4, entry 5), whereas very good selectivities were obtained for oxidative alkenyl-alkyl cross-coupling reactions (Table 4, entries 6–8).

The results summarized in Tables 1–4 demonstrate that aryl, alkenyl and alkyl Grignard reagents (RMgX) can be efficiently coupled using N<sub>2</sub>O as the oxidant and simple transition metal salts as catalysts. The mechanism of these reactions likely involves the formation of a diorganyl metal complex MR<sub>2</sub>L<sub>n</sub>, which undergoes a reductive elimination before or after oxidation by N<sub>2</sub>O. The order of these two steps may depend on the substrate and the catalyst. In the case of iron-catalyzed cross-coupling reactions of Grignard reagents with electrophiles, catalytic cycles shuttling between Fe<sup>I</sup>/Fe<sup>III</sup>, Fe<sup>0</sup>/Fe<sup>II</sup> or Fe<sup>-II</sup>/Fe<sup>0</sup> have been proposed. At the moment, we do not have experimental evidence in favor of a particular scenario. For the oxidation of organocuprates, it has been

Table 4: Oxidative cross-coupling of Grignard reagents.

| R-MgX + R'-MgX          |               | Li <sub>2</sub> CuCl <sub>4</sub> (1 mol %) | $N_2O$ $R-R+R$                    | 0<br>→ R-R + R <b>-</b> R' + R'-R' |  |
|-------------------------|---------------|---------------------------------------------|-----------------------------------|------------------------------------|--|
| (1 equi                 | iv) (2 equiv) | 1111                                        | A B                               | С                                  |  |
| Entry                   | t [h]         | Product <b>B</b>                            | Yield <b>B</b> [%] <sup>[a]</sup> | A/B/C                              |  |
| 1                       | 2             | Ph <b>−</b> <i>n</i> Bu                     | 59                                | 8:84:8                             |  |
| 2                       | 2             | Ph—ndecyl                                   | 61                                | 11:80:9                            |  |
| 3 <sup>[c]</sup>        | 18            | Ph—O—                                       | 67 (57) <sup>[b]</sup>            | 5:52:43                            |  |
| 4                       | 2             | Ph—                                         | 83                                | 0:76:24                            |  |
| 5                       | 2             | Ph——                                        | 16                                | 53:31:16                           |  |
| 6                       | 2             | Ph                                          | 87                                | 0:79:21                            |  |
| 7                       | 2             | Ph                                          | 82 (76) <sup>[b]</sup>            | 0:100:-                            |  |
| <b>8</b> <sup>[d]</sup> | 2             | Phr                                         | 65                                | 0:66:34                            |  |
|                         |               |                                             |                                   |                                    |  |

[a] Yields were determined by GC-MS analysis. [b] Yields of isolated products are given in parentheses. [c] The reaction was started at 0°C and was then allowed to slowly warm to RT. [d] The *E/Z* ratio of the product (86:14) was similar to that of the starting material (89:11).

suggested that oxidation of a [CuR<sub>2</sub>]<sup>-</sup> complex preceeds the reductive elimination,<sup>[13]</sup> and a similar mechanism can be proposed for our system. Whitesides et al. had observed that the oxidation of Li[CuPh(nBu)] with O<sub>2</sub> gave a nearly statistical mixture of biphenyl, phenylbutane, and octane.<sup>[14a]</sup> Our catalytic cross-coupling reactions of aryl and alkyl Grignard reagents with N<sub>2</sub>O, on the other hand, displayed good selectivity for the mixed product. Interestingly, we observed that the selectivity for the cross-coupling product was lower when higher catalyst loadings were employed (Table S3).

It is evident that  $N_2$  is a likely side product for all  $N_2O$  reactions described above. To demonstrate that  $N_2O$  is indeed converted into  $N_2$  during the catalytic cycle, we analyzed the gas headspace before, during, and after completion of the reaction of octylmagnesium bromide with  $\text{Li}_2\text{CuCl}_4$  (1 mol%). The chromatograms clearly show the formation of  $N_2$  (Figure S1). Along with  $N_2$ , one expects the formation of equal amounts of MgO (Scheme 1). The latter can aggregate

$$RMgX + R'MgX + N_2O \xrightarrow{\text{catalyst}} R-R' + MgX_2 + MgO + N_2$$

$$THF$$

**Scheme 1.** General reaction of Grignard reagents with N<sub>2</sub>O.

with MgX<sub>2</sub> to form magnesium oxohalide clusters, such as  $[(MgO)(MgBr_2)_3(solv)_4]$  (solv=solvent), which are known oxidation products of Grignard reagents.<sup>[16]</sup>

In conclusion, we have shown that N<sub>2</sub>O can be used as an oxidant for the oxidative coupling reactions of Grignard reagents with [Fe(acac)<sub>3</sub>], CoCl<sub>2</sub>, or Li<sub>2</sub>CuCl<sub>4</sub> as catalysts. For most reactions, catalyst loadings of 0.1–1.0 mol% were sufficient to obtain good yields. Some aryl–aryl coupling

reactions could be performed with less than 0.01 mol% catalyst loading. The corresponding turnover numbers are unprecedented for solution-based oxidation reactions with N<sub>2</sub>O. Compared to alternative procedures with O<sub>2</sub> as the oxidant, our new method offers some important advantages: 1) It is possible to use lower amounts of catalyst, as N<sub>2</sub>O is less prone to undergo metal-independent side reactions. 2) Sterically demanding arylmagnesium halides can be used as substrates. 3) Reactive alkyl Grignard reagents can be employed as substrates. 4) Aryl-alkyl and alkenyl-alkyl cross-coupling reactions can be achieved with good selectivity. These features should be attractive for applications in organic synthesis. But the implications of our work are possibly broader. The N<sub>2</sub>O method is apparently compatible with a variety of transition metals (Fe, Co, and Cu). Complexes of these metals are used as catalysts in many other oxidative coupling reactions of nucleophiles, [7] some of which are thought to involve low-valent organometallic species. It appears likely that N<sub>2</sub>O can be used as oxidant for some of these reactions as well.

Received: March 25, 2013 Published online: May 13, 2013

Keywords: copper · Grignard reagents · homogeneous catalysis · iron · nitrous oxide

- [1] A. V. Leont'ev, O. A. Fomicheva, M. V. Proskurnina, N. S. Zefirov, Russ. Chem. Rev. 2001, 70, 91-104.
- [2] a) G. I. Panov, K. A. Dubkov, A. S. Kharitonov in Modern Heterogeneous Oxidation Catalysis (Ed.: M. Noritaka), Wiley-VCH, Weinheim, 2009, pp. 217-252; b) V. N. Parmon, G. I. Panov, A. S. Noskov, Catal. Today 2005, 100, 115-131.
- [3] W. B. Tolman, Angew. Chem. 2010, 122, 1034-1041; Angew. Chem. Int. Ed. 2010, 49, 1018-1024.
- [4] a) H. Goldberg, D. Kumar, G. N. Sastry, G. Leitus, R. Neumann, J. Mol. Catal. A 2012, 356, 152-157; b) J. Ettedgui, R. Neumann, J. Am. Chem. Soc. 2009, 131, 4-5; c) R. Ben-Daniel, R. Neumann, Angew. Chem. 2003, 115, 96-99; Angew. Chem. Int. Ed. 2003, 42, 92-95; d) R. Ben-Daniel, L. Weiner, R. Neumann, J. Am. Chem. Soc. 2002, 124, 8788-8789.
- [5] a) A. G. Tskhovrebov, E. Solari, R. Scopelliti, K. Severin, Organometallics 2012, 31, 7235-7240; b) H. Tanaka, K. Hashimoto, K. Suzuki, Y. Kitaichi, M. Sato, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn. 2004, 77, 1905-1914; c) K. Hashimoto, H. Tanaka, T. Ikeno, T. Yamada, Chem. Lett. 2002, 582-583; d) K. Hashimoto, Y. Kitaichi, H. Tanaka, T. Ikeno, T. Yamada, Chem.

- Lett. 2001, 922-923; e) T. Yamada, K. Hashimoto, Y. Kitaichi, K. Suzuki, T. Ikeno, Chem. Lett. 2001, 268-269.
- [6] For solution-based oxidation reactions without metal catalysts, see: a) K. Banert, O. Plefka, Angew. Chem. 2011, 123, 6295-6298; Angew. Chem. Int. Ed. 2011, 50, 6171-6174; b) D. P. Ivanov, K. A. Dubkov, D. E. Babushkin, S. V. Semikolenov, G. I. Panov, Adv. Synth. Catal. 2009, 351, 1905-1911; c) I. Hermans, B. Moens, J. Peeters, P. Jacobs, B. Sels, Phys. Chem. Chem. Phys. 2007, 9, 4269-4274; d) E. V. Starokon, K. A. Dubkov, D. E. Babushkin, V. N. Parmon, G. I. Panov, Adv. Synth. Catal. 2004, 346, 268-274; e) F. S. Bridson-Jones, G. D. Buckley, L. H. Cross, A. P. Driver, J. Chem. Soc. 1951, 2999-3008.
- [7] a) C. Liu, H. Zhang, W. Shi, A. Lei, Chem. Rev. 2011, 111, 1780-1824; b) J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359-1469.
- [8] For early investigations, see: a) G. M. Bennett, E. E. Turner, J. Chem. Soc. 1914, 1057 – 1062; b) H. Gilman, M. Lichtenwalter, J. Am. Chem. Soc. 1939, 61, 957-959.
- [9] a) S.-K. Hua, Q.-P. Hu, J. Ren, B.-B. Zeng, Synthesis 2013, 518-526; b) K. Kude, S. Hayase, M. Kawatsura, T. Itoh, Heteroat. Chem. 2011, 22, 397-404; c) Z. Zhou, W. Xue, J. Organomet. Chem. 2009, 694, 599-603; d) G. Cahiez, C. Chaboche, F. Mahuteau-Betzer, M. Ahr, Org. Lett. 2005, 7, 1943-1946; e) T. Nagano, T. Hayashi, Org. Lett. 2005, 7, 491-493.
- [10] a) P. I. Aparna, B. R. Bhat, J. Mol. Catal. A 2012, 358, 73-78; b) G. Cahiez, C. Duplais, J. Buendia, Angew. Chem. 2009, 121, 6859-6862; Angew. Chem. Int. Ed. 2009, 48, 6731-6734; c) W. Liu, A. Lei, Tetrahedron Lett. 2008, 49, 610-613; d) G. Cahiez, A. Moyeux, J. Buendia, C. Duplais, J. Am. Chem. Soc. 2007, 129, 13788 - 13789.
- [11] For the metal-free oxidation of Grignard reagents, see: a) M. S. Maji, T. Pfeifer, A. Studer, Chem. Eur. J. 2010, 16, 5872-5875; b) M. S. Maji, A. Studer, Synthesis 2009, 2467-2470; c) M. S. Maji, T. Pfeifer, A. Studer, Angew. Chem. 2008, 120, 9690 - 9692; Angew. Chem. Int. Ed. 2008, 47, 9547-9550; d) A. Krasovskiy, A. Tishkov, V. del Amo, H. Mayr, P. Knochel, Angew. Chem. **2006**, 118, 5132–5136; Angew. Chem. Int. Ed. **2006**, 45, 5010– 5014; e) T. Nishiyama, T. Seshita, H. Shodai, K. Aoki, H. Kameyama, K. Komura, Chem. Lett. 1996, 549-550.
- [12] T. Nagano, T. Hayashi, Chem. Lett. 2005, 34, 1152-1153.
- [13] S. S. Surry, D. R. Spring, Chem. Soc. Rev. 2006, 35, 218-225.
- [14] For early investigations, see: a) G. M. Whitesides, J. SanFilippo, Jr., C. P. Casey, E. J. Panek, J. Am. Chem. Soc. 1967, 89, 5302 – 5303; b) C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422 –
- [15] R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417 -
- [16] a) H. Vitze, H.-W. Lerner, M. Bolte, Acta Crystallogr. Sect. E 2011, 67, m1614; b) G. Stucky, R. E. Rundle, J. Am. Chem. Soc. **1964**, 86, 4821 – 4825.

6305